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Abstract

The broad spectrum of spin probes used for electron paramagnetic resonance imaging (EPRI) result in poor spatial resolution of the
reconstructed images. Conventional deconvolution procedures can enhance the resolution to some extent but obtaining high resolution
EPR images is still a challenge. In this work, we have implemented and analyzed the performance of a postacquisition deblurring tech-
nique to enhance the spatial resolution of the EPR images. The technique consists of two steps; noniterative deconvolution followed by
iterative deconvolution of the acquired projections which are then projected back using filtered backprojection (FBP) to reconstruct a
high resolution image. Further, we have proposed an analogous technique for iterative reconstruction algorithms such as multiplicative
simultaneous iterative reconstruction technique (MSIRT) which can be a method of choice for many applications. The performance of
the suggested deblurring approach is evaluated using computer simulations and EPRI experiments. Results suggest that the proposed
procedure is superior to the standard FBP and standard iterative reconstruction algorithms in terms of mean-square-error (MSE), spatial
resolution, and visual judgment. Although the procedure is described for 2D imaging, it can be readily extended to 3D imaging.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Electron paramagnetic resonance imaging (EPRI) is a
noninvasive technique that is capable of mapping the dis-
tribution of unpaired electrons [1,2]. It has a distinct
advantage in many medical applications [3–5] where it
can be used for the direct measurement of both endogenous
and introduced free radicals. In the past few years, the
potential applications of EPRI to studies of living biologi-
cal systems have been recognized [6–9]. Despite all the pro-
gress made in the last two decades, the acquisition of high
quality images of biological samples has been limited by
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several technical factors including resolution, sensitivity,
and speed of data acquisition [10,11].

Although spatial EPRI is capable of mapping the distri-
bution of free radicals, the broad absorption spectra of
EPR along with low signal-to-noise (SNR) make it partic-
ularly difficult to generate images with high spatial resolu-
tion which can be crucial in extracting fine details of the
distribution of free radicals. In EPRI, the spatial resolution
depends on a number of factors such as the intrinsic line-
width of the paramagnetic species which is generally three
orders of magnitude larger than that of NMR, gradient
strength, SNR, and the effectiveness of the deconvolution
procedure. The resolution can be enhanced by using probes
with narrow spectrum and by applying high gradient
strengths. On the other hand, increasing the gradient
strength lowers the SNR. Hence, increasing the gradient
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strength beyond a certain limit may result in degradation of
the image quality because of inadequate SNR. Therefore, a
postprocessing procedure to enhance the image resolution
would be useful.

It should be noted that this work is limited to purely
spatial EPRI where spectral shape is considered to be
invariant throughout the object. Thus, for samples having
spatially varying spectral shapes or multiple radical species,
purely spatial EPRI is incapable of generating unambigu-
ous distribution of the free radicals. In order to solve this
problem an additional dimension, the spectral dimension,
is required in the EPRI to hold the spectral shape informa-
tion. The imaging technique that also includes a spectral
dimension is termed as spectral–spatial imaging. Although,
acquiring the spectral dimension eliminates the necessity to
perform deconvolution, it increases the data acquisition
time considerably. Therefore, for objects with spatially
invariant spectral shape, a more attractive solution is to
perform purely spatial EPRI and rely on a deconvolution
procedure to obtain high resolution images.

In EPRI, conventional noniterative deconvolution is
generally applied to suppress the effects of system blurring
and hence to improve the spatial resolution of the image.
The deconvolution, however, tends to amplify the high fre-
quency component of the measured projection data, which
is primarily noise. Therefore, lowpass filtering is generally
applied to each projection to suppress the high frequency
components and to avoid the division-by-zero problem.
This lowpass filtering, at the same time, introduces unde-
sired blurring in the projections and consequently in the
reconstructed image. In this work, we present a deblurring
technique to enhance the spatial resolution beyond the lim-
its of the conventional deconvolution. The technique is
based on the concept of iterative deconvolution [12] which
has been effective in generating superresolution images in
many other fields including MRI. In this paper, however,
the deblurring procedure is actually carried out in two steps
[13], i.e., the conventional noniterative deconvolution
followed by the iterative deconvolution to suppress the
blurring introduced by the lowpass filtering of the noniter-
ative deconvolution of the first step.

The implementation of the suggested deblurring
approach is described for two reconstruction methods,
i.e., filtered backprojection (FBP) and iterative reconstruc-
tion schemes. For FBP, all the projections are deconvolved
using the previously proposed [13] two-step deblurring pro-
cedure before applying back projection. For the iterative
reconstruction [14–16], we have proposed an analogous
two-step deblurring procedure in which the first step is
the same, i.e., each projection is deconvolved by the con-
ventional noniterative procedure, but the second step (iter-
ative deconvolution), to suppress the blurring introduced
by the lowpass filtering in the first step, is not performed
explicitly but is rather merged with the iterative reconstruc-
tion procedure itself. The iterative reconstruction algo-
rithm used in this research is multiplicative simultaneous
iterative reconstruction technique (MSIRT) [17], and we
expect similar results for the other iterative reconstruction
techniques. The simulation and EPRI experimental results
suggest that the proposed deblurring scheme generates
images with substantial improvement in the reconstruction
quality for both the FBP and the MSIRT for a variety of
imaging parameters including different SNR and gradient
strengths. The figures of merit to evaluate the performance
of the suggested deblurring technique are mean-square-er-
ror (MSE) and the spatial resolution which is measured
in terms of the feature-preserving capabilities of the
reconstruction.

2. Theory

2.1. Data acquisition

Most of the EPR experiments are conducted in continu-
ous wave (CW) domain as the technical challenges associ-
ated with pulsed EPR [18] limit its broad use. In CW
EPRI, the data are acquired in the form of projections
[19] which are the absorption signal detected by sweeping
the main magnetic field in the presence of a linear static
magnetic field gradient. The orientation of the acquired
projection is determined by the direction of the magnetic
field gradient which is a vector sum of three independent
and mutually orthogonal field gradients. A projection of
a 2D object f(x1,x2) along orientation h is defined as

yðrÞ ¼
Z 1

�1

Z 1

�1
f ðx1; x2Þdðx1 cos hþ x2 sin h� rÞdx1 dx2

ð1Þ
where r is the spatial coordinate. The measured projection,
however, is the convolution of the true spatial profile of the
paramagnetic material y(r) and the transfer function which,
for EPRI, is modeled from spectral shape function, p0(r),
which is the absorption signal measured in the absence of
magnetic field gradient.

pðrÞ ¼ yðrÞ � p0ðrÞ ð2Þ
where � represents convolution. In Fourier domain

P ðkÞ ¼ Y ðkÞP 0ðkÞ ð3Þ
where P(k), Y(k), and P0(k) are the 1D Fourier transforms
of p(r), y(r), and p0(r), respectively.

It should be noted that Eq. (2) is only valid when p0(r) is
spatially invariant throughout the object. However, this
assumption may not precisely hold for situations where
the experimental conditions such as variations in the RF
phase, the B1 amplitude, or the heterogeneous physiologi-
cal properties of the in vivo sample may cause p0(r) to vary
with space. In this case, reconstruction results based on
most deconvolution procedures including the one proposed
in this work would be prone to ambiguities.

The spectral shape function p0(r) depends on the para-
magnetic species under study, and usually belongs to a
parametric family of functions such as Lorentzian, Gauss-
ian, or Voigt [20]. The width of p0(r), also known as line-
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Fig. 1. Flow chart of two-step deblurring. Inside the dotted box is a
commonly used iterative deconvolution technique. Here, W is the lowpass
window function in the Fourier domain, P is the measured projection data
in the Fourier domain, yw is partially deconvolved projection data, point
spread function w, which is an IFT of W, is used to iteratively deconvolve
yw, ~pm is partially deconvolved projection data estimate after mth iteration,
ym is the deconvolved projection data (spatial profile) estimate after mth
iteration, and l is the relaxation factor.
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width, directly affects the image resolution. A spectrum
with large linewidth results in excessive smearing or blur-
ring of the projection data and hence generates images with
poor spatial resolution. The effect of image blurring can be
reversed by deconvolving each projection, which is usually
carried out in the Fourier domain.

Y ðkÞ ¼ P ðkÞ
P 0ðkÞ

ð4Þ

In the presence of noise, however, the division by P0(k) re-
sults in noise amplification and division-by-zero problems.
Therefore, it is a common practice to apply a lowpass
windowing function before dividing by P0(k).

Y wðkÞ ¼
½PðkÞW ðkÞ�

P 0ðkÞ
ð5Þ

Multiplication by the lowpass function W(k) introduces
blurring in the projections and consequently in the recon-
structed image. A selection of an excessively broad W(k) re-
sults in a noisier reconstruction while a selection of an
excessively narrow W(k) results in blurred images. Opti-
mum choices of the window function and its cutoff frequen-
cy kc are usually content dependant. A few systematic
approaches to determine the cutoff frequency of W(k) have
been proposed [21].

In the remainder of the paper, for brevity, we drop the
variables r and k. Lower-case represents a variable in the
image domain while upper-case represents a variable in
the Fourier domain.

2.2. Two-step deblurring

Iterative constrained deconvolution has been applied
effectively for solving the deblurring problem in image
reconstruction such as in optical imaging [22] and MRI
[23]. For the iterative deconvolution, the initial estimate
y0 of the true spatial profile is convolved with a known
transfer function to generate an output which is compared
with the measured data (i.e., projections) and the difference
is fed back to update the estimate. The process is repeated
until the update is below some threshold value or some
other criterion is reached. There are several iterative decon-
volution techniques available [24], each of them differing in
the way the correction term is calculated and the update is
applied. The Jansson–van Citteret [25] type algorithm that
is used in this work is a commonly used example of the iter-
ative deconvolution. It should be noted that any constraint
based on a priori information (such as non-negativity) can
be embedded in the iterative deconvolution procedure to
improve the performance. Unfortunately, the van Citteret
[12] or similar iterative deconvolution techniques have the
tendency to generate noisy solutions [26] which may not
be useable without further processing (pre- or postfiltering
of the data). The recently proposed two-step deblurring
procedure, on the other hand, has been shown to be effec-
tive in deblurring individual projections without noise
amplification. Although, the previous work does not
involve image reconstruction, it describes the two-step
technique to deblur acquired 1D projections. In this work,
we have shown that the two-step deblurring applied either
explicitly or by embedding it within the reconstruction
technique results in enhanced spatial resolution of the
reconstructed image. The complete procedure for two-step
deblurring is described in Fig. 1. First, an acquired projec-
tion p is deconvolved noniteratively and later the output yw

is further deconvolved using the iterative scheme. The
point spread function w used in the iterative scheme is
the inverse Fourier transform (IFT) of the lowpass window
function W used in noniterative deconvolution. In Fig. 1, l
is the relaxation factor [27] that controls the gain of the
feedback loop.

As is the case with the conventional deconvolution, the
cutoff frequency kc of W affects the reconstruction quality
of the two-step deblurring approach. It has been suggested
[13] that the combination of a smaller kc values followed by
iterative deconvolution generates better results than using a
larger kc values. In this work, W is selected to be a Ham-
ming window with its kc chosen empirically for each com-
bination of imaging parameters such that the best results in
term of feature identification, which is one of the figures of
merit, were obtained. A more systematic way to select the
window type and its cutoff frequency kc requires further
investigation.
2.3. Iterative reconstruction

The FBP, which is based on direct inversion of the
Radon transform [28], is the most commonly used recon-
struction technique from the projection data. For a large
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number of projections, the FBP generate images with rea-
sonable quality. In EPRI, there are usually a limited num-
ber of projections available since data acquisition is a time
consuming process. Hence, for many applications the FBP
may not generate desirable results since the reconstruction
exhibits severe streak-artifacts for a small number of pro-
jections, which may degrade the image quality to an unac-
ceptable level. In addition, the FBP does not incorporate
the measurement noise and the transfer function of the sys-
tem. As a result, the acquired data have to be deconvolved
separately before applying the FBP. To address these
issues, there are several iterative reconstruction algorithms
[29,30] available such as additive algebraic reconstruction
technique (AART), multiplicative algebraic reconstruction
technique (MART), and multiplicative simultaneous itera-
tive reconstruction technique (MSIRT). These different
approaches to the iterative reconstruction differ from one
another in the way the correction term is derived and the
update to the new estimate is applied. Recently, reconstruc-
tions based on the iterative schemes have been presented
for EPRI [31,32].

The transfer function modeled from the observed spec-
tral shape can be incorporated in the iterative reconstruc-
tion by computing the correction term (to update the
image estimate) based on the dissimilarity (e.g., difference
or ratio) between the measured projections and the convo-
lution of spatial profile estimate with the transfer function.
If the spectral shape corresponds to a parametric family of
functions, the observed spectral shape can be curve-fitted
by an appropriate function to generate a noise-free transfer
function for improved results. In this work, the observed
spectral shape p0 was taken as the transfer function and
no curve fitting was applied.

The results presented in this work are based on the
MSIRT. Although, we observed comparable performance
for the AART and MART, the MSIRT exhibited a slightly
better performance at low SNR which is usually the case
for EPRI. A detailed comparison of various iterative
reconstruction techniques for EPRI is left for further stud-
ies. An iteration of MSIRT [17], after taking into account
the transfer function, is given by

f mþ1
j ¼ f m

j

PI
i¼1

picijPJ

j¼1
cijPI

i¼1

pm
i cijPJ

j¼1
cij|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Correction

ð6Þ

where

pm
i ¼ ym

i � p0 ð7Þ
where j is the pixel index, J is total number of pixels, m is
the iteration number, i is the projection index, I is the total
number of projections, pi is the ith measured projection, ym

i

is the estimate of ith deblurred projection calculated by the
Radon transform of updated image estimate fm+1, and
weight function cij represents the path length of ray i that
lies in cell j [30].
On the down side, the time required for one iteration of
the iterative reconstruction is approximately 2–3 times
more than that of the FBP, and depending on the algo-
rithm settings and convergence criterion, 10–100 iterations
are used for one reconstruction [16]. To address this issue, a
few algorithms have been proposed [33,34] to speed up the
reconstruction process of the iterative schemes. Moreover,
increase in computation power (due to the availability of
faster microprocessors and memory) has reduced the
reconstruction time even further. As a result, these iterative
reconstructions schemes are emerging as an attractive alter-
native to the FBP. We observed that the total time for 2D
MSIRT reconstruction in Matlab (Natick, MA) from 36
projections (each with a length of 275 data points) for
100 iterations was about 80 s.

One major disadvantage of the iterative schemes is that
the reconstruction shows excessive statistical noise if the
projection data are noisy which may result in degradation
of the spatial resolution. In EPRI, where SNR is generally
low, a direct use of iterative reconstruction schemes may
not generate desired results. Different techniques to solve
this problem have been investigated for other applica-
tions. One possible solution is to regularize the recon-
struction which can be achieved by restricting the
reconstruction to be composed of functions that possess
some smoothing properties [35]. A second solution is to
limit the number of iterations [36] and stop the recon-
struction process before the noise deterioration degrades
the image quality. A third solution is to postprocess the
reconstructed image to suppress the noise. In clinical
applications, the postprocessing method is generally
applied because of its flexibility and fast speed. Although,
postfiltering the reconstructed image effectively suppresses
the noise, it may also degrade the spatial resolution. The
results presented in this paper indicate that the suggested
deblurring technique has the potential to generate smooth
images with high spatial resolution that, in many cases,
cannot be achieved by postfiltering.

2.4. Implementation of two-step deblurring for FBP and

MSIRT

As mentioned earlier, the FBP and iterative reconstruc-
tion schemes have their advantages and disadvantages, and
depending on the application one may be more suited than
the other. A detailed comparison of the FBP and the iter-
ative reconstruction schemes is beyond the scope of this
research. In this work, we have provided two variations
of the two-step deblurring approach; one for the FBP
and other for the iterative reconstruction schemes. For
the FBP, each projection is deconvolved using the previ-
ously proposed idea of two-step deblurring approach
shown in Fig. 1. The deconvolved projections are then fil-
tered using a highpass ramp filter before applying back
projection. We abbreviate this procedure (two-step deblur-
ring followed by the FBP) as FBPm to distinguish it from
the conventional FBP.
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For the iterative reconstruction, the two-step deblurring
procedure is shown in Fig. 2. All the projections are par-
tially deconvolved using Eq. (5) to generate yw before
applying the MSIRT. Here, the second step (iterative
deconvolution) is not applied explicitly and is effectively
integrated into the MSIRT. We abbreviate this procedure
as MSIRTm to distinguish it from the conventional MSIRT
described in Eq. (6). While the MSIRT operates directly on
the acquired noisy projections, MSIRTm operates on par-
tially deconvolved projections with suppressed noise.
Although it is possible to decouple the deconvolution from
iterative reconstruction by performing the two-step deblur-
ring prior to the iterative reconstruction, we observed an
improvement in the reconstruction quality by incorporat-
ing the second step of deblurring into the MSIRT. Like
other iterative deconvolution techniques, the two-step
deblurring performed on individual projections has a ten-
dency to introduce false spikes in the projections. Since
the iterative reconstruction schemes including MSIRT seek
an image estimate that comes as close to input data as pos-
sible, the spikes in the input data (deconvolved projections)
may generate pronounced artifacts in the reconstructed
image. On the other hand, partially deconvolved projec-
tions are smoother for which the MSIRT generates results
devoid of artifacts with clear background. The first step of
partial deconvolution of the projections effectively sup-
presses noise due to the lowpass nature of w, but at the
same time it also introduces blurring in the projections.
The further deblurring of yw is accomplished by convolving
the spatial profile estimate ym with w and feeding the dis-
similarity between ym � w and yw (e.g., the difference or
the ratio) back to the image estimate. Since yw is an
approximation of ym � w, reducing the dissimilarity
between ym � w and yw drives ym towards y. In Fig. 2, [Æ]
Fig. 2. Flow chart of the iterative reconstruction merged with the two-step deb
technique where [Æ] is the operator to calculate the correction term to update the
P is the measured projection data in the Fourier domain, yw is partially dec
function w, which is an IFT of W, is used to iteratively deconvolve yw, ~pm is the
the estimate of the deconvolved projection data (spatial profile) after the mth it
Radon transform.
represents an operator to calculate the correction term to
update the image estimate in each iteration. For conven-
tional MSIRT, the correction term is given in Eq. (6) while
for MSIRTm the correction term is given in Eq. (8).

f mþ1
j ¼ f m

j

PI
i¼1

ywicijPJ

j¼1
cijPI

i¼1

~pm
i cijPJ

j¼1
cij|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Correction

ð8Þ

where

~pm
i ¼ ym

i � w ð9Þ

Although, we observed similar results with Gaussian
and Hanning windows, we have used a Hamming window
for W since its use for the deconvolution of EPR projection
data has already been reported [21].

2.5. Figure of merit

The commonly used mean-square-error (MSE) is used
as a quantitative measure of the image quality. The MSE
is defined as the average of the squared difference between
the reference image (ground truth) and the reconstructed
image.

The quantification of the spatial resolution for 1D
objects is well established. Generally, the spatial resolution
for a 1D object is measured as either the edge preserving
capability or the least spatial distance between two distinct
features that can be successfully separated from one anoth-
er for some threshold. For an object with more than one
spatial dimension, separation of a feature, and hence the
direct quantification of the spatial resolution, is more
involved since the feature separation from its surroundings
~

lurring. Inside the dotted box is a prototype for an iterative reconstruction
estimate. Here, W is the lowpass window function in the Fourier domain,

onvolved projection data after noniterative deconvolution, point spread
estimate of partially deconvolved projection data after mth iteration, ym is

eration, fm is the object estimate after the mth iteration, and RT represents
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is required to examined in all orientations. Moreover, due
to the structured artifacts in the EPRI reconstruction, the
reconstructed image may possess different resolutions in
different orientations depending on the choice of projection
set. On the other hand, the capability to identify closely
placed features in an image is an effective way to judge
the over all spatial resolution. We have used a three step
procedure to judge if a feature present in the reference
image can actually be identified in the reconstructed image.
First, edge detection is performed using Laplacian of
Gaussian [37] (LoG) with a 2D isotropic Gaussian kernel
having a standard deviation of two pixels. Second, a mor-
phological filter [38] is used to fill all the close contours gen-
erated by the edge detector. Third, segmentation is carried
out by assigning all the connected pixels to one entity. Now
the segmented image is compared with the reference image.
If a feature in the segmented image matches the corre-
sponding feature in the reference image, it is counted as
identified. Although there are number of configuration
parameters related to a feature, we have chosen centroid
and area (with the tolerance of 25%) to match a given
feature between the reconstructed and the reference images.
3. Results

3.1. Simulations

For performance evaluation, the reconstruction results
from the regular FBP and MSIRT were compared with
FBPm and MSIRTm where the two-step deblurring
approach was included in the reconstruction. A 192 · 192
digital phantom shown in Fig. 3 was used for the simula-
tions. The phantom consisted of 15 dots arranged on an
equilateral triangular grid. The piecewise continuous and
a well organized pattern of the phantom makes for a more
direct judgment of the reconstruction quality. The imaging
parameters were chosen to simulate EPRI experiments at
L-band (1.2 GHz). All simulations were performed using
Matlab. The imaging parameters in the simulation were
as follows: field of view, 2 · 2 cm2; data points per projec-
0

1

Fig. 3. A 192 · 192 digital phantom alongside the colormap used in all the
simulations. The phantom consists of fifteen dots arranged on an
equilateral triangular grid.
tion, 275; width of Lorentzian spectral shape, 450 mG. A
linear baseline correction was applied to each projection
prior to deconvolution. The projection data were acquired
for combinations of two different gradient strengths (4 G/
cm and 6 G/cm), four different SNR (32, 22, 12, and 7)
measured as the ratio of peak-signal amplitude to peak-
noise amplitude for the first derivative of the spectral shape
function recorded in the absence of magnetic field gradient,
and two different number of projections (n = 24 and
n = 36). The results are shown in Figs. 4 and 5 for FBP
and MSIRT, respectively. After reconstruction, 32 pixels
were cropped from each border of the image for better
visualization. For FBP-based reconstructions, a 20% back-
ground cut was applied such that all the pixels in the recon-
structed image with intensity less that the 20% of the peak
value were set to zero. On the other hand, no such back-
ground cut was applied for the iterative reconstruction
since the background was already devoid of reconstruction
artifacts. To demonstrate the convergence behavior, the
MSE vs. number of iteration curve is given in Fig. 6 for
one set of imaging parameters. We observed similar
convergence behavior for the other imaging parameters.

3.2. EPRI experiment

For validation of the technique, an experimental phan-
tom shown in Fig. 7A was constructed from 15 capillary
tubes glued together to form an equilateral triangle. Each
capillary tube had an inner diameter of 0.9 mm and an out-
er diameter of 1.4 mm. All the tubes were filled to a height
of 10 mm with 2 mM 15N-PDT (4-oxo-2,2,6,6-tetramethyl-
piperidine-d16-15N-oxy) radical dissolved in distilled water.
The center field and sweep width were selected such that
the observed signal was solely due to one (low field) of
the two lines of the 15N-PDT spectrum, while the other line
was put safely outside the range of the magnetic field
sweep. Hence, we were not required to perform a hyperfine
correction. The measured room air peak-to-peak linewidth
was 440 mG. Imaging was performed on an L-band
(1.2 GHz) EPRI system with a volume resonator with a
diameter of 12.6 mm and a useable height of 12 mm. Spec-
trometer settings were: incident power, 4 mW; scan time
per projection, 5.24 s; field of view, 25 · 25 mm2; gradient
strengths, 3.5 and 6 G/cm; modulation amplitudes, 220,
120, 40, 20, 10 mG (with the corresponding measured
SNR of 200, 100, 27, 16, 8). Since spectral shape varies with
the modulation amplitude, a separate spectral shape was
observed for each modulation amplitude. A total of 256
projections were acquired for each combination of SNR
and gradient strength. Originally, each acquired projection
had 1024 data points which were downsampled to 275
points for faster reconstruction. Again, linear baseline
correction was applied to each projection before the
deconvolution. However, no correction for B1 field
inhomogeneities was applied [39]. After reconstruction,
22% of the image was cropped from each border for better
visualization. The reference image shown in Fig. 7B was



Fig. 4. Simulation results for the FBP and the FBPm which is the two-step deblurring followed by the regular FBP. (A) Reconstruction results for various
imaging parameters. Here, MSE is the mean-square-error and M is the number indicating the tubes successfully identified by the feature extraction routine.
(B) Zoomed version of reconstruction results for one set of imaging parameters. The first column shows the reconstruction from FBP and FBPm while the
second column shows the corresponding segmented image. A white entity represents a successfully identified tube, a filled gray entity represents a feature
that is not recognized as tube and a gray contour represents the feature in the reconstruction image for which the edge detector could not find a close
contour.
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reconstructed using the FBP from 256 projections acquired
at the modulation amplitude of 220 mG (SNR of 200) and
the gradient strength of 10 G/cm. Again, a 20% back-
ground cut was applied to all the FBP-based reconstruc-
tions including the reference image. The experimental
results for the FBP and the MSIRT are shown in Figs. 8
and 9, respectively. Although the experiments were per-
formed and the data was analyzed for all possible combina-
tions of the stated SNR and gradient strengths, only a
fraction of the data is presented in this work. The data
acquired at high gradient strengths and high SNR generat-
ed high quality images for all the techniques including the
conventional reconstruction techniques. On the other
hand, the data acquired at low gradient strengths and
low SNR was unable to generate meaningful results by
any of the techniques. Therefore, the results for these two
combinations of imaging parameter are not presented in
this work.



Fig. 5. Simulation results for the MSIRT and the MSIRTm which is the iterative reconstruction technique merged with two-step iterative deconvolution.
(A) Reconstruction results for various imaging parameters. Here, MSE is the mean-square-error and M is the number indicating the tubes successfully
identified by the feature extraction routine. (B) Zoomed version of reconstruction results for one set of imaging parameters. The first column shows the
reconstruction from MSIRT and MSIRTm while the second column shows the corresponding segmented image. A white entity represents a successfully
identified tube, a filled gray entity represents a feature that is not recognized as tube and a gray contour represents the feature in the reconstruction image
for which the edge detector could not find a close contour.
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4. Discussion

Conventional deconvolution procedures are generally
applied to deblur the images to improve the spatial resolu-
tion which can be critical in identifying the details in the
distribution of paramagnetic specie. The impact of decon-
volution depends on the choice of the lowpass window
function and its cutoff frequency. For noisy projections,
increasing the cutoff frequency beyond a certain limit
amplifies noise to an extent that image quality degrades
to an unacceptable level. Therefore, the performance of
regular noniterative deconvolution is primarily determined
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Fig. 6. Rate of convergence for one set of imaging parameters (number of projections: 24, SNR: 7, and gradient strength 6 G/cm). (A) Convergence of
FBP-based reconstruction when each projection is independently deconvolved using the stated two-step deblurring approach. The MSE is calculated from
the FBP-based reconstructed image after each iteration of the iterative deconvolution. (B) Convergence of MSIRT vs. MSIRTm.

Fig. 7. Experimental phantom. (A) A phantom constructed from 15 capillary tubes arranged on an equilateral triangular grid. Each capillary tube had an
inner diameter of 0.9 mm and an outer diameter of 1.4 mm. All the tubes were filled to a height of 10 mm with 2 mM concentration of 15N-PDT (4-oxo-
2,2,6,6-tetramethyl-piperidine-d16-15N-oxy) radical dissolved in distilled water. Imaging was performed using an L-band (1.2 GHz) EPRI system. (B)
Reference image reconstructed using FBP from 256 projections acquired with gradient of 10 G/cm, modulation amplitude of 220 mG, and SNR of 200.
Pixels with intensity less than 20% of the peak intensity were set to zero.
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by the cutoff frequency whose selection is based on factors
like the frequency component of the acquired projection
data, convolution kernel, and the SNR. The two-step
deblurring technique described in this paper generates
images with resolution that cannot be achieved by the con-
ventional methods especially for the data acquired with
insufficient gradient strength (due to hardware limitations)
or low SNR. The two variations of the deblurring
approach, one for the FBP and the other for iterative
reconstruction algorithms such as MSIRT, are presented.
A total of eight datasets were considered for the simula-
tions, each with a different combination of SNR (32, 22,
12, and 7), gradient strength (4 G/cm and 6 G/cm), and
number of projections (24 and 36).

For the FBP, the simulation results displayed in Fig. 4
suggest that the image quality can be improved consider-
ably by using the two-step deblurring procedure. The fea-
ture identification capability, in particular, is enhanced as
more tubes can be successfully identified by the feature
extraction routine as demonstrated in Fig. 4B. Mean fea-
ture identification capability (measured as the percentage
of dots successfully identified by the routine) averaged over
all the eight cases presented in Fig. 4 was increased from
17.5% to 85%. Likewise, the mean MSE averaged over all
the cases was reduced from 0.050 to 0.029. It should be not-
ed that for the FBP the suggested two-step approach does
not enhance the resolution of the 2D image directly, but it
rather increases the resolution of individual 1D projections.
As a result, the streak artifact may also get worse as the
projections get sharper. The enhanced streak artifact is
especially visible for a small number of projections.

We have further extended the two-step deblurring tech-
nique for the iterative reconstruction which can be a method
of choice because of its ability to generate streak-free recon-
structions. Fig. 5 illustrates that the MSIRTm generates
images with improved spatial resolution, considerably lower
MSE, and enhanced feature identification capability. By
incorporating the suggested modifications, the noise in the
conventional MSIRT is greatly reduced. Quantitatively,
the mean feature identification capability was increased from



Fig. 8. Experimental results for the FBP and the FBPm. (A) Reconstruction results for various imaging parameters. Here, MSE is the mean-square-error
and M is the number indicating the tubes successfully identified by the feature extraction routine. (B) Zoomed version of reconstruction results for one set
of imaging parameters. The first column is the reconstruction from FBP and FBPm while the second column shows the corresponding segmented image. A
white entity represents a successfully identified tube, a filled gray entity represents a feature that is not recognized as tube and a gray contour represents the
feature in the reconstruction image for which the edge detector could not find a close contour.
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48% to 99%, while the mean MSE was reduced from 0.041 to
0.032 for all the eight cases shown in Fig. 5.

For 2D EPRI experiment, a total of four datasets were
considered, each with a different combination of SNR
(100, 27, 16, and 8) and gradient strength (3.5 G/cm and
6 G/cm). The results presented in Figs. 8 and 9 suggest that
image quality is improved by the two-step deblurring proce-
dure for both FBP- and MSIRT-based reconstructions. The
results of 2D EPRI experiment are in accordance with the
simulation results. The two-step deblurring approach gener-
ates images with lower MSE and improved feature identifica-
tion capability. For FBP-based reconstructions, mean
feature identification capability was increased from 12% to
67%, while the mean MSE was reduced from 0.042 to
0.022 for the four cases shown in Fig. 8. For MSIRT, mean
feature identification capability was increased from 42% to
90%, and the mean MSE was reduced from 0.034 to 0.017
for the four cases presented in Fig. 9.

5. Conclusions

A two-step deblurring procedure consisting of conven-
tional noniterative deconvolution followed by iterative
deconvolution to improve the spatial resolution of the
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Fig. 9. Experimental results for the MSIRT and the. (A) Reconstruction results for various imaging parameters. Here, MSE is the mean square error and
M is the number indicating the tubes successfully identified by the feature extraction routine. (B) Zoomed version of reconstruction results for one set of
imaging parameters. The first column is the reconstruction from MSIRT and MSIRTm while the second column shows the corresponding segmented
image. A white entity represents a successfully identified tube, a filled gray entity represents a feature that is not recognized as tube and a gray contour
represents the feature in the reconstruction image for which the edge detector could not find a close contour.
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EPR images has been proposed. The implementation is
carried out for the FBP as well as for the iterative recon-
struction algorithms such as MSIRT. The simulation and
experimental results indicate that the inclusion of the
two-step deblurring approach to FBP or MSIRT generates
images which are substantially better, both qualitatively
and quantitatively, to the ones based on the corresponding
conventional FBP or MSIRT. The enhancement of the
image quality is evident for a wide range of imaging param-
eters such as SNR, gradient strengths, and number of pro-
jections. Although, the procedure is explained for 2D
imaging, it can be readily extended to 3D imaging.
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